Способ получения смешанного фотокатализатора на основе оксида титана



Владельцы патента RU 2760442:

Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет (национальный исследовательский университет)» ФГАОУ ВО «ЮУрГУ (НИУ)» (RU)

Изобретение относится к области химической технологии. Данное изобретение может быть использовано для очистки сточных вод промышленных предприятий, содержащих трудноокисляемые органические соединения. Способ получения смешанного фотокатализатора на основе оксида титана включает три этапа: первый этап проводят по пероксидной методике, причем к 0,1 М раствору оксисульфата титана добавляют 0,05 М силиката натрия и гидролизуют гидроксидом натрия с концентрацией 1,5 М до рН 3,2; полученный гелеобразный осадок центрифугируют со скоростью 3000 об/мин и отмывают дистиллированной водой до отрицательной реакции на противоионы исходных солей; затем к гидрогелю добавляют 30% раствор перекиси водорода и доводят дистиллированной водой и водным аммиаком 3М до рН 7, получая пероксокомплекс титана и кремниевую кислоту; после чего в смесь по каплям вводят 3 М раствор азотной кислоты до достижения значения рН 2, затем проводят гидротермальную обработку в автоклаве при саморегулирующемся давлении 3 МПа и температуре 180°С в течение 24 часов, полученный осадок отделяют центрифугированием при скорости 3000 об/мин, отмывают дистиллированной водой и сушат в сушильном шкафу при 60°С в течение 24 часов; второй этап включает получение золя кремниевой кислоты, при этом через бюретку с катионитом КУ-2-8 пропускают раствор силиката натрия с концентрацией 0,28 г/л, в полученный золь кремниевой кислоты вводят фотокаталитически активный оксид титана, полученный на первом этапе, осуществляют перераспределение частиц под воздействием УЗ частотой 60 Гц в течение 90 минут; третьим этапом проводят гранулирование фотокатализатора методом капельного введения в иммерсионное масло на 24 часа, после чего полученные гранулы отмывают от масла и высушивают в сушильном шкафу при температуре 100°C до постоянной массы. Техническим результатом является получение высокоэффективного гранулированного смешанного фотокатализатора на основе TiO2/SiO2 в матрице силикагеля с размером гранул 0,1+ см и размером фотокаталитически активных частиц 15-20 нм. 1 пр.

 

Изобретение относится к области химической технологии. Данное изобретение может быть использовано для очистки сточных вод промышленных предприятий, содержащих трудноокисляемые органические соединения.

Известен способ получения термостабильного микропористого покрытия на основе оксида титана-кремния (патент RU 2733936), в котором разработано покрытие с содержанием фазы анатаза не менее 95 % и обладающего высокой фотокаталитической активностью. Благодаря постсинтетической обработке материал обладает повышенной пористостью и высокой удельной поверхностью, что, соответственно, приводит к увеличению площади контакта с загрязнителем. средним диаметром примерно 700 нм. Недостатками данного изобретения является использование тетраэтоксисилана, который обладает ингаляционной токсичностью [1] и применение высоких температур при получении. На данный момент, общей тенденцией в мире является разработка низкотемпературных процессов получения материалов [2].

Известен способ получения термостабильного фотокатализатора на основе диоксида титана (RU 2408427). Данный способ основан на добавлении водного раствора сульфата титанила в раствор кислоты с последующим гидролизом полученного раствора в гидротермальных условиях и последующим высушиванием. Данным способом получают материал с размером частиц 20-60 нм в фазе анатаза. Недостатком данного изобретение является именно малый размер части, который способствует увеличению фотокаталитической активности, но приводит к их адгезии, невозможности извлечении из реакционной среды при очистке вод от загрязнителей и не позволит использовать фотокатализатор повторно.

Наиболее близким к техническому решению является гидротермальный пероксо-способ получения высококристаллических SiO2-TiO2 фотокатализаторов [3]. В данном методе силикат натрия при его добавляли к тиосульфату натрия играет важную роль. Силикат натрия позволяет получать высокую кристалличность TiO2. Он как бы «запечатывает» в своей структуре частицы титана, контролируя их рост. При измерении площади поверхности и пористости, SiO2 обеспечивает TiO2 такими незаменимыми свойствами, как мезопористость и развитая поверхность, что приводит, по мнению автора, к повышенной фотокаталитической активности. Частицы состоят из монокристалла анатаза, покрытого аморфными частицами SiO2. Фаза чистого анатаза получена без применения высокотемпературных процессов под действием гидротермальной обработки в автоклавах. Недостатком данного метода является использование полученного кремне-титанового фотокатализатора в виде порошка. При эксплуатации, частицы будут слипаться между собой, что приведет к снижению эффективность материала, сложности удаления из реакционной среды.

В основу изобретения положена техническая задача, заключающаяся в получении гранулированного смешанного высокоэффективного термостабильного фотокатализатора на основе оксидов титана и кремния.

Техническим результатом является получение гранулированного смешанного фотокатализатора на основе TiO2/SiO2 в матрице силикагеля с размером гранул 0,1+см и размером фотокаталитически активных частиц 15-20 нм.

Технический результат получают за счет того, что способ получения смешанного фотокатализатора на основе оксида титана, согласно изобретения, включает три этапа: первый этап проводят по пероксидной методике, причем к 0,1 М раствору оксисульфата титана добавляют 0,05 М силиката натрия и гидролизуют гидроксидом натрия с концентрацией 1,5 М до рН 3,2; полученный гелеобразный осадок центрифугируют со скоростью 3000 об/мин и отмывают дистиллированной водой до отрицательной реакции на противоионы исходных солей; затем к гидрогелю добавляют 30% раствор перекиси водорода и доводят дистиллированной водой и водным аммиаком 3М до рН 7, получая пероксокомплекс титана и кремниевую кислоту; после чего в смесь по каплям вводят 3 М раствор азотной кислоты до достижения значения рН 2, затем проводят гидротермальную обработку в автоклаве при саморегулирующемся давлении 3 МПа и температуре 180°С в течение 24 часов, полученный осадок отделяют центрифугированием при скорости 3000 об/мин, отмывают дистиллированной водой и сушат в сушильном шкафу при 60°С в течение 24 часов; второй этап включает получение золя кремниевой кислоты, при этом через бюретку с катионитом КУ-2-8 пропускают раствор силиката натрия с концентрацией 0,28 г/л, в полученный золь кремниевой кислоты вводят фотокаталитически активный оксид титана, полученный на первом этапе, осуществляют перераспределение частиц под воздействием ультразвука (далее УЗ), частотой 60 Гц в течение 90 минут; третьим этапом проводят гранулирование фотокатализатора методом капельного введения в иммерсионное масло на 24 часа, после чего полученные гранулы отмывают от масла и высушивают в сушильном шкафу при температуре 100°C до постоянной массы.

Гранулированный смешанный фотокатализатор на основе TiO2/SiO2 получают за счет того, что размер фотокаталитически активных частиц оксида титана снижают до 15…20 нм и внедряют в гранулы из инертной подложки на основе оксида кремния. Эти гранулы получают размером 0,1+ см, что позволяет легко отделять фотокатализатор от очищенной воды методом отстаивания. Использование гидротермального способа получения фотокатализатора позволяет избежать высокотемпературных процессов, при этом получив высоко фотокаталитически активную фазу TiO2 - анатаз. Использование дешевых и неопасных соединений (перекись водорода, оксисульфат титана, силикат натрия) для синтеза дает возможность получать недорогой и высокоактивный фотокатализатор.

Сущность способа состоит в следующем.

Первым этапом получения фотокатализатора является получение оксида титана по пероксидной методике. К 0,1 моль/л (М) оксисульфату титана TiOSO4 в количестве 50 мл нужно добавить 50 мл 0,05 М силиката натрия Na2SiO3 и гидролизовать гидроксидом натрия NaOH с концентрацией 1,5 М до рН 3,2. Полученные гелеобразные осадки центрифугировать при скорости вращения, равной 3000 об/мин и отмывать дистиллированной водой до отрицательной реакции на противоионы исходных солей. На следующей стадии к гидрогелю добавить 4 мл H2O2, концентрацией не менее 30 %. Объем доводить до 50 мл дистиллированной водой и с помощью водного аммиака (3 М) довести рН реакционной смеси до значения 7,0. Образуется прозрачный оранжевый раствор, содержащий пероксокомплекс титана и кремниевую кислоту. После установления рН, равным 7, в смесь по каплям ввести 3 М раствор азотной кислоты HNO3 до достижения значения рН 2. После добавления кислоты раствор должен быть прозрачным. Затем объем раствора довести до 50 мл дистиллированной водой. Далее перенести в автоклав, для гидротермальной обработки, автоклав должен быть заполнен на 50% своего объёма. Гидротермальную обработку провести при саморегулирующемся давлении 3 МПа и температуре 180°С в течение 24 часов. После гидротермальной обработки, осадок отделить центрифугированием при 3000 об/мин, отмыть дистиллированной водой и сушить в сушильном шкафу при 60°С в течение 24 часов. Так как полученные частицы адгезируются друг с другом, фотокатализатор необходимо измельчить до порошкообразного состояния. Данные условия определены экспериментально, как оптимальные.

Вторым этапом является получение золя кремниевой кислоты, который будет служить подложкой для фотокаталитически активных частиц оксида титана. Через бюретку с катионитом КУ-2-8, массой 30 г необходимо пропустить 50 мл раствор силиката натрия Na2SiO3 с концентрацией 0,28 г/л. Первые 5 мл фильтрата, остальной объём фильтрата Золя кремниевой кислоты следует использовать для получения гранулированного фотокатализатора. Значение рН полученного золя кремниевой кислоты должны быть в интервале от 2,5-3,3.

Третьим этапом является перераспределение частиц под действием УЗ-воздействия с использованием УЗ-ванны, частотой 60 Гц. В 50 мл золя кремниевой кислоты вводим 25 мг оксида титана, полученного на первом этапе и подвергнуть УЗ-воздействию в течение 90 минут. Данные условия определены экспериментально, как оптимальные.

Заключительным (третьим) этапом является гранулирование фотокатализатора методом капельного введения в иммерсионное масло. Для этого в делительную воронку наливают смешанный золь кремниевой кислоты с частицами TiO2 и по каплям вводят в ёмкость с иммерсионным маслом, выдерживают 24 часа под слоем иммерсионного масла до полного созревания гранул фотокатализатора. Полученные гранулы фотокатализатора отмывают от масла и высушивают в сушильном шкафу при 100°C до постоянной массы. Данные условия определены экспериментально, как оптимальные.

Пример получения смешанного фотокатализатора

На первом этапе проводится получение оксида титана в фазе анатаза. К 0,1 М оксисульфату титана TiOSO4 в количестве 50 мл, добавляют 50 мл 0,05 М силиката натрия Na2SiO3 и гидролизуют гидроксидом натрия NaOH с концентрацией 1,5 М до значения рН 3,2. Образуется гелеобразный осадок, который центрифугируют (при 3000 об/мин) и отмывают дистиллированной водой до отрицательной реакции на противоионы исходных солей. К гидрогелю добавляют 4 мл H2O2, концентрацией не менее 30 %. Объем раствора доводят до 50 мл дистиллированной водой и при помощи водного аммиака (3 М) значение рН реакционной смеси доводят до значения 7,0. Образуется прозрачный оранжевый раствор, содержащий пероксокомплекс титана и кремниевую кислоту. После установления значения рН 7, в смесь по каплям вводят 3 М раствор азотной кислоты HNO3 до достижения значения рН 2. После добавления кислоты раствор должен быть прозрачным. Затем объем раствора доводят до 50 мл дистиллированной водой. Далее перенести в автоклав, для гидротермальной обработки, автоклав должен быть заполнен на 50% своего объёма. Гидротермальную обработку проводят при саморегулирующемся давлении и температуре 180°С в течение 24 часов в термостате. После гидротермальной обработки, осадок отделяют центрифугированием при 3000 об/мин, отмывают дистиллированной водой и сушат в сушильном шкафу при температуре 60°С в течение 24 часов.

Второй этап включает получение золя кремниевой кислоты. Через бюретку с катионитом КУ-2-8, массой 30 г пропускают 50 мл раствора силиката натрия Na2SiO3 с концентрацией 0,28 г/л. В полученный золь кремниевой кислоты вводят фотокаталитически активный оксид титана, полученный на первом этапе. Перераспределение частиц осуществляют под воздействием УЗ, частотой 60 Гц в УЗ-ванне в течение 90 минут.

Завершающим этапом является гранулирование фотокатализатора. Гранулирование проводят методом капельного введения в иммерсионное масло. Золь кремниевой кислоты с частицами оксида титана вносят в делительную воронку, из которой, его капельно вводят в сосуд с иммерсионным маслом. Для созревания гранулы оставляют в иммерсионном масле на 24 часа. Полученные гранулы отмывают от масла и высушивают в сушильном шкафу при температуре 100°C до постоянной массы.

Условия получения разработаны опытным путем и являются оптимальными для разработки высокоэффективного фотокатализатора. Любое изменение выполнения способа может привести к снижению эффективности материала, механической стойкости и т.д.

Полученный, описанным выше методом, фотокатализатор на основе TiO2/SiO2 в матрице силикагеля с размером гранул 0,1+см и размером фотокаталитически активных частиц 15-20 нм проявляет высокую фотокаталитическую активность в широком диапазоне рН и температур.

Источники использованной литературы

1. Nakashima, H., Omae, K., Takebayashi, T., Ishizuka, C., Uemura, T. (1998). Toxicity of Silicon Compounds in Semiconductor Industries. Journal of Occupational Health, 40(4), 270-275. doi:10.1539/joh.40.270.

2. Yin, S., Zhang, Q., Saito, F., & Sato, T. (2010). Synthesis of titanium dioxide-based, visible-light induced photocatalysts by mechanochemical doping. High-Energy Ball Milling, 304-330. doi:10.1533/9781845699444.3.304.

3. Krivtsov, I., Ilkaeva, M., Avdin, V., Khainakov, S., Garcìa, J. R., Ordòñez, S., … Faba, L. (2015). A hydrothermal peroxo method for preparation of highly crystalline silica-titania photocatalysts. Journal of Colloid and Interface Science, 444, 87-96. doi:10.1016/j.jcis.2014.12.044.

Способ получения смешанного фотокатализатора на основе оксида титана, включающий три этапа: первый этап проводят по пероксидной методике, причем к 0,1 М раствору оксисульфата титана добавляют 0,05 М силиката натрия и гидролизуют гидроксидом натрия с концентрацией 1,5 М до рН 3,2; полученный гелеобразный осадок центрифугируют со скоростью 3000 об/мин и отмывают дистиллированной водой до отрицательной реакции на противоионы исходных солей; затем к гидрогелю добавляют 30% раствор перекиси водорода и доводят дистиллированной водой и водным аммиаком 3М до рН 7, получая пероксокомплекс титана и кремниевую кислоту; после чего в смесь по каплям вводят 3 М раствор азотной кислоты до достижения значения рН 2, затем проводят гидротермальную обработку в автоклаве при саморегулирующемся давлении 3 МПа и температуре 180 °С в течение 24 часов, полученный осадок отделяют центрифугированием при скорости 3000 об/мин, отмывают дистиллированной водой и сушат в сушильном шкафу при 60 °С в течение 24 часов; второй этап включает получение золя кремниевой кислоты, при этом через бюретку с катионитом КУ-2-8 пропускают раствор силиката натрия с концентрацией 0,28 г/л, в полученный золь кремниевой кислоты вводят фотокаталитически активный оксид титана, полученный на первом этапе, осуществляют перераспределение частиц под воздействием УЗ частотой 60 Гц в течение 90 минут; третьим этапом проводят гранулирование фотокатализатора методом капельного введения в иммерсионное масло на 24 часа, после чего полученные гранулы отмывают от масла и высушивают в сушильном шкафу при температуре 100 °C до постоянной массы.



 

Похожие патенты:

Изобретение касается фильтрующего картриджа для воды. Фильтрующий картридж для воды содержит корпус и расположенный со стороны фильтра присоединительный элемент к емкости для установки в емкость для воды, в частности в емкость для воды бытового прибора, и фильтрующий участок для подготовки воды, отбираемой из этой емкости для воды.

Изобретение относится к области адсорбционной техники для получения модифицированных активных углей. Способ получения модифицированного активного угля включает промывание промышленного активного угля (АУ) дистиллированной водой, обработку 5%-ным раствором глицина при отношении массы угля (г) к объему раствора (см3) - 1:100 в течение 24 часов, а затем дальнейший прогрев при температуре 200°С в атмосфере воздуха в течение 1 часа.

Изобретение относится к cпособу получения модифицированного сорбента для извлечения ионов Cu(II), Ni(II) и Zn(II) из водных растворов, заключающемуся в получении раствора хитозана в 1% уксусной кислоте, интенсивном перемешивании, постепенном добавлении эпихлоргидрина в качестве сшивающего агента и перемешивании, последующем капельном введении приготовленной смеси в водный щелочной раствор, выдерживании в нем образовавшихся гранул и тщательной промывке дистиллированной водой до нейтрального рН, причем гомогенизацию геля хитозана проводят путем обработки ультразвуком в течение 20-40 мин, капельное введение приготовленного геля сшитого хитозана осуществляют в водный раствор гидроксида натрия с концентрацией 1 М, в котором образовавшиеся гранулы выдерживают в течение 20-50 мин с последующей промывкой дистиллированной водой, а модифицирование гранул хитозана проводят в водном растворе, содержащем 2-этилимидазол и хлорид никеля в молярном соотношении 2-этилимидазол / Ni2+, равном 2:1-8:1.

Изобретение относится к теплоэнергетике в области защиты теплообменного оборудования, котлов, трубопроводов и других металлических элементов на электростанциях, в котельных, на промышленных предприятиях при производстве пара, получении горячей воды для водопроводных сетей, получении обессоленной и умягченной воды для подпитки паровых котлов.

Изобретение относится к области теплоэнергетики. Центробежно-капельный деаэратор, содержащий цилиндрический корпус с верхней и нижней торцевыми крышками, с тангенциальными патрубками подвода деаэрируемой жидкости, сепаратор, соединенный с корпусом посредством отверстий в корпусе, трубу отвода выпара, с устройством для диспергирования жидкости, при этом труба отвода выпара выполнена из двух коаксиально расположенных трубопроводов – внешнего и внутреннего трубопровода, при этом внешний трубопровод соединен с сепаратором, обеспечивая забор выпара из сепаратора, а внутренний трубопровод проходит через весь деаэратор и соединен с ёмкостью устройства для диспергирования, осуществляя забор выпара из упомянутой ёмкости.

Изобретение относится к способу очистки сточных вод от фенолов и гидроксипроизводных фенолов путем гидротермального окисления растворов в присутствии пероксида водорода. Способ характеризуется тем, что очистку проводят в реакторе проточного типа при рабочем давлении 10 МПа и температурах 165-235°С, растворы и окислитель с молярным отношением Н2О2:производные фенола не ниже 13 прокачивают через рабочую зону реактора восходящим потоком с помощью дозирующих насосов, смешение растворов происходит в нижней части реактора в зоне нагрева.

Изобретение относится к экологической очистке, в частности к биоэкологическому микроэнергетическому устройству плавучего острова и способу очистки водоемов со сточными и пахучими водами с его использованием. Способ включает размещение плавучего биоэкологического микроэнергетического устройства плавучего острова на поверхности водоема со сточными и пахучими водами.

Изобретение относится к очистке дренажных стоков и может быть использовано в водоохранных мероприятиях при получении дополнительных объемов чистой воды для оросительной мелиорации. Способ очистки дренажного стока рисовой оросительной системы включает пропускание дренажного стока через фильтрующую кассету с сорбентом, установленную в русле сбросного канала оросительной системы.

Изобретение может быть использовано при очистке воды в химической и фармацевтической промышленности. Способ непрерывного получения озонированной воды включает впрыскивание подкисляющего агента в струю подаваемой воды под давлением для поддержания рН ниже 7 и подачу воды под давлением в колонну растворения для образования кислой воды под давлением.

Изобретение относится к аппарату для электролиза воды или водных растворов с получением анолита и католита. Аппарат содержит цилиндрический корпус, закрытый с торцевых сторон двумя торцевыми крышками, катод в виде внутренней цилиндрической поверхности корпуса, стержневые аноды, продольно установленные внутри корпуса, и ионообменные диафрагмы, продольно расположенные в корпусе между анодами и катодом с образованием анодного пространства между диафрагмами и анодами и катодного пространства между диафрагмами и катодом, а также входы воды в анодное и катодное пространства, выход анолита из анодного пространства и выход католита из катодного пространства.
Изобретение относится к переработке кварц-лейкоксеновых концентратов и может быть использовано для получения диоксида титана сернокислотным методом. Переработка концентрата включает его обжиг с железосодержащей добавкой, в качестве которой используют отход производства глинозема в виде красного шлама при соотношении кварц-лейкоксенового концентрата к массе красного шлама 1:1,1-1,2 с последующим охлаждением и выщелачиванием серной кислотой при температуре 160-170°С.
Наверх