Способ фотодинамической терапии

Изобретение относится к медицине, онкологии и может быть использовано для фотодинамической терапии (ФДТ) опухолей. Для этого пациенту вводят фотосенсибилизатор. Затем облучают патологический участок световым излучением с длиной волны, равной длине волны спектрального максимума поглощения фотосенсибилизатора. При этом патологический участок дополнительно облучают световым излучением с длиной волны, отличающейся от длины волны спектрального максимума поглощения на 7-15 нм. Проведение такой терапии позволяет повысить эффективность ФДТ опухолей больших размеров, особенно при их большой толщине, за счет более полного разрушения всех слоев опухоли и равномерного распределения фотодинамического воздействия по глубине патологического очага. 3 з.п. ф-лы.

 

Настоящее изобретение относится к медицине, а более конкретно к способам фотодинамической терапии (ФДТ) опухолей.

Известен способ фотодинамической терапии опухолей, включающий системное введение пациенту препарата - фотосенсибилизатора, избирательно накапливающегося в опухоли, а затем облучение патологического участка световым излучением с длиной волны, примерно равной длине волны спектрального максимума поглощения фотосенсибилизатора. Поглощение молекулами фотосенсибилизатора светового излучения приводит к генерации в опухоли синглетного кислорода или других активных кислородных частиц, являющихся цитотоксическими агентами и разрушающими клетки и сосуды опухоли [Robert A. Weersink, Arjen Bogaards, Mark Gertner, Sean R.H. Davidson, Kai Zhang, George Netchev, John Trachtenberg, Brian Wilson "Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of prostate: Clinical experience and practicalities". Journal of Photochemistry and Photobiology B: Biology 79 (2005), p.211-222]. Этот способ наиболее близок к предлагаемому и поэтому выбран в качестве ближайшего аналога.

При ФДТ опухолей больших размеров, особенно при их большой толщине (порядка 10 мм и более) спад интенсивности света в глубину опухоли из-за поглощения света в верхних слоях сенсибилизированной ткани, а также фотовыгорание (фотобличинг) фотосенсибилизатора приводят к тому, что нижние слои опухоли могут оказаться неразрушенными. При этом вероятность разрушения всей опухоли, включая ее нижние слои, не может быть увеличена путем увеличения дозы вводимого препарата из-за того, что сильно сенсибилизированные приповерхностные слои будут за счет своего высокого поглощения экранировать нижние. Повысить фотодинамическое воздействие на нижние слои за счет повышения плотности мощности облучения не всегда возможно из-за аппаратурных ограничений и, самое главное, из-за опасности нагреть опухоль и прилегающие к ней ткани.

В настоящем изобретении решается задача повышения эффективности ФДТ опухолей больших размеров за счет более полного разрушения всех их слоев, особенно при большой толщине опухолей.

Задача решается тем, что в способе фотодинамической терапии опухолей, в котором пациенту вводят препарат-фотосенсибилизатор, а затем облучают патологический участок световым излучением с длиной волны, равной длине волны спектрального максимума поглощения фотосенсибилизатора, дополнительно патологический участок облучают световым излучением с длиной волны, отличающейся от длины волны спектрального максимума поглощения на 7-15 нм.

Задача решается также тем, что при дополнительном облучении используют дозу облучения не ниже, чем при облучении световым излучением с длиной волны, близкой к длине волны спектрального максимума поглощения фотосенсибилизатора.

Задача решается также тем, что дополнительное облучение осуществляют непосредственно перед облучением излучением с длиной волны, близкой к длине волны спектрального максимума поглощения фотосенсибилизатора.

Задача решается также тем, что дополнительное облучение осуществляют одновременно с облучением излучением с длиной волны, близкой к длине волны спектрального максимума поглощения фотосенсибилизатора.

Предлагаемый способ реализуют следующим образом.

В организм внутривенно вводят фотосенсибилизатор. Через определенное время, выбранное исходя из фармакокинетики фотосенсибилизатора (исходя из условия максимального накопления фотосенсибилизатора в опухоли и его селективности по отношению к нормальной ткани) начинают терапевтическое облучение. Сначала осуществляют облучение излучением с длиной волны, превышающей длину волны спектрального максимума поглощения фотосенсибилизатора на 7-15 нм, коэффициент поглощения которого примерно вдвое ниже, чем в спектральном максимуме полосы поглощения, что обеспечивает большую долю энергии, которая поглощается глубокими слоями опухоли. После облучения на этой длине волны в течение определенного времени, достаточного для фотодинамического повреждения глубоких слоев опухоли, осуществляют облучение на длине волны спектрального максимума поглощения фотосенсибилизатора, которое поглощается преимущественно в приповерхностной области. Таким образом, энергия суммарного поглощения и фотодинамическое воздействие оказываются достаточно равномерно распределенными по глубине патологического очага, что повышает эффективность ФДТ.

Пример 1. Проведены исследования на 3 группах мышей Ф1 с опухолью Эрлиха толщиной около 0,9 см, расположенной под слоем кожи 0,1 см, с введенным фотосенсибилизатором Фотосенс в дозе 2 мг/кг. Первая группа - контрольная. При облучении мышей второй группы на длине волны 675 нм, близкой к максимуму спектрального поглощения, с плотностью световой мощности 100 мВт/см2 в течение 20 мин достигнуто значение коэффициента торможения роста опухоли 65%. В третьей группе предварительно проведено облучение на длине волны 687 нм с плотностью световой мощности 100 мВт/см2 в течение 10 мин, а затем на длине волны максимума спектрального поглощения 678 нм с плотностью световой мощности 100 мВт/см достигается коэффициент торможения роста опухоли 76%.

Пример 2. Проведены исследования на 3 группах мышей BDF1 с опухолью Са755 толщиной около 1,0 см, расположенной под слоем кожи 0,1 см, с введенным фотосенсибилизатором Фотосенс в дозе 2 мг/кг. Первая группа - контрольная. При облучении мышей второй группы на длине волны 675 нм, близкой к максимуму спектрального поглощения, с плотностью световой мощности 250 мВт/см в течение 20 мин достигнуто значение коэффициента торможения роста опухоли 61%. В третьей группе проведено облучение на длине волны 687 нм с плотностью световой мощности 150 мВт/см2 одновременно с облучением на длине волны 675 нм, близкой к максимуму спектрального поглощения, с плотностью световой мощности 100 мВт/см в течение 10 мин. Достигнуто значение коэффициента торможения роста опухоли 71%.

Пример 3. Проведены исследования на 3 группах мышей Ф1 с опухолью Эрлиха толщиной около 0,9 мм, расположенной под слоем кожи 0,1 см, с введенным фотосенсибилизатором Фотосенс в дозе 2 мг/кг. Первая группа - контрольная. При облучении мышей второй группы на длине волны 675 нм, равной длине волны максимума спектрального поглощения, с плотностью световой мощности 100 мВт/см в течение 20 мин достигнуто значение коэффициента торможения роста опухоли 65%. В третьей группе предварительно проведено облучение на длине волны 667 нм с плотностью световой мощности 100 мВт/см2 в течение 10 мин, а затем на длине волны 675 нм, равной длине волны максимума спектрального поглощения, с плотностью световой мощности 100 мВт/см в течение 10 мин. Достигнуто значение коэффициента торможения роста опухоли 75%.

1. Способ фотодинамической терапии опухолей, при котором пациенту вводят фотосенсибилизатор, а затем облучают патологический участок световым излучением с длиной волны, равной длине волны спектрального максимума поглощения фотосенсибилизатора, отличающийся тем, что патологический участок дополнительно облучают световым излучением с длиной волны, отличающейся от длины волны спектрального максимума поглощения на 7-15 нм.

2. Способ по п.1, отличающийся тем, что при дополнительном облучении используют дозу облучения не ниже, чем при облучении световым излучением с длиной волны, равной длине волны спектрального максимума поглощения фотосенсибилизатора.

3. Способ по п.2, отличающийся тем, что дополнительное облучение осуществляют непосредственно перед облучением излучением с длиной волны, равной длине волны спектрального максимума поглощения фотосенсибилизатора.

4. Способ по п.2, отличающийся тем, что дополнительное облучение осуществляют одновременно с облучением излучением с длиной волны, равной длине волны спектрального максимума поглощения фотосенсибилизатора.



 

Похожие патенты:
Изобретение относится к медицине, а именно к онкологии, и может быть использовано при лечении злокачественных опухолей. .

Изобретение относится к медицине, а конкретно к офтальмологии. .
Изобретение относится к области медицины, а именно к офтальмологии, и предназначено для лечения передней ишемической нейропатии глаза. .

Изобретение относится к медицине, а именно к гастроэнтерологии. .

Изобретение относится к области медицины. .

Изобретение относится к медицине, а именно к физиотерапии и офтальмологии, и может быть использовано для лечения больных глаукомой. .

Изобретение относится к медицинской технике, в частности к устройствам для физиотерапии. .
Изобретение относится к медицине, косметологии, и может быть использовано для омоложения кожи. .
Изобретение относится к офтальмологии и может быть использовано для электрохимической деструкции и фотодинамической терапии меланом хориоидеи экваториальной локализации с проминенцией более 4 мм.
Изобретение относится к медицине, а именно к оториноларингологии, физиотерапии. .
Изобретение относится к ветеринарной медицине, точнее к физиотерапии и использованию лазерной техники для лечения животных
Изобретение относится к области медицины, а именно к способам профилактики дерматологических заболеваний неинфекционного характера

Изобретение относится к области медицины, а именно к ортопедии, и может быть использовано для моделирования развития эпифизарной дисплазии

Изобретение относится к медицине, онкологии и может быть использовано при лечении онкологических больных
Изобретение относится к медицине, к онкологии, и может быть использовано для реабилитационной избирательной хронофототерапии
Изобретение относится к области медицины, а именно к хирургии и андрологии, и может быть использовано при лечении варикоцеле
Изобретение относится к офтальмологии и предназначено для хирургической обработки ран роговицы с дефицитом ткани
Изобретение относится к медицине, офтальмологии, и может быть использовано для фотодинамической терапии ангиоматозов сетчатки
Изобретение относится к медицине, а точнее к офтальмологии, и может быть использовано для фотодинамической терапии ангиоматозов сетчатки
Изобретение относится к медицине, в частности к хирургии и гинекологии, и может быть использовано при лечении гнойно-воспалительных осложнений послеоперационных ран
Наверх