Способ получения эфиров сорбитана и жирных кислот

Изобретение относится к способу получения сложных эфиров сорбитана, являющихся поверхностно-активными веществами, который может быть использован в химической промышленности. В предложенном способе получения сложных эфиров жирных кислот и сорбитана растительные масла взаимодействуют непосредственно с сорбитом в присутствии каталитической системы, состоящей из оксикислоты и гидроксида натрия при их молярном соотношении 0,8:1,2-1:2 и при концентрации каталитической системы 2-4 мас. % в расчете на сорбит. Предложен новый эффективный способ получения эфиров сорбитана и жирных кислот с цветностью по шкале Гарднера не выше 5,5. 2 з.п. ф-лы, 1 табл., 32 пр.

 

Изобретение относится к способам получения сложных эфиров, а именно к эфирам сорбитана и жирных кислот, которые могут быть использованы в качестве поверхностно-активных веществ в народном хозяйстве.

Известен способ получения эфиров сорбитана переэтерификацией метиловых эфиров жирных кислот. В качестве карбоновых кислот используют жирные кислоты соевого, кукурузного, подсолнечного или оливкового масел (Low calorie fat substitute US 5458910, A23D 9/007, Oct. 17, 1995).

Однако в процессе переэтерификации образуется побочный продукт - метанол.

Известен двухстадийный синтез эфиров жирных кислот с использованием кислотного катализатора на стадии дегидратации сорбита и щелочного катализатора на стадии этерификации (Process for preparing sorbitan esters. US 4297290, C09F 5/08, Oct. 27, 1981).

Недостатком этого метода является то, что жирные кислоты, например такие, как лауриновая, пальмитиновая, стеариновая кислота, при высоких температурах (при которых обычно проводится процесс этерификации) дистиллируются вместе с водой из реакционной смеси и оседают на конденсаторах, что может привести к порче реакционных установок. К тому же требуется стадия осветления продукта.

Наиболее близким к заявленному является одностадийный способ получения эфиров сорбитана с жирными кислотами, такими как олеиновая и лауриновая в присутствии каталитической системы, состоящей из фосфорсодержащей кислоты и щелочи (Manufacture of fatty acid esters of sorbitan as surfactants, US 6362353, C11c 3/00, Mar. 26, 2002).

Недостатком этого способа получения является то, что для улучшения цвета продукта требуется введение специальных добавок на стадии синтеза. Этот показатель очень важен, а именно цветность не должна быть выше 5,5 по шкале Гарднера, поскольку при использовании синтезированных эфиров в качестве эмульгаторов, смазок или пластификаторов в полимерах более темный цвет эфиров может сказаться на цветности конечных продуктов.

Задача изобретения - усовершенствование синтеза получения сложных эфиров сорбитана и жирных кислот, повышение качества продукта.

Поставленная задача решается тем, что способ получения сложных эфиров жирных кислот и сорбитана с цветностью по шкале Гарднера не выше 5,5 предусматривает взаимодействие растительных масел непосредственно с сорбитом в присутствии каталитической системы, состоящей из оксикислоты и гидроксида натрия при их молярном соотношении 0,8:1,2-1:2 и при концентрации каталитической системы 2-4 мас. % в расчете на сорбит.

В качестве жирных кислот используют жирные кислоты гидрированного пальмового или подсолнечного масел. В качестве оксикислот каталитической системы применяют фосфористую, или лимонную, или аскорбиновую кислоты.

Сущность изобретения заключается в том, что в процессе получения сложных эфиров сорбитана, а именно при переэтерификации триглециридов (растительных масел), не происходит улетучивание жирных кислот из реакционной смеси. Использование каталитической системы, содержащей щелочь и оксикислоты, которые являются антиоксидантами, позволяет получить продукты с улучшенным цветом.

Сущность предлагаемого изобретения иллюстрируется следующими примерами.

Пример 1 (по изобретению)

В круглодонную колбу, снабженную подводом азота, термометром, механической мешалкой, вакуумным насосом, загружают гидрированное подсолнечное масло 884 г (1 моль) и катализатор 4,46 г (2 мас. % от сорбита; смесь фосфористой кислоты и гидроксида натрия в молярном соотношении кислота: основание 0,8:1), смесь продувают азотом и повышают температуру до 120°С, затем вносят сорбит 223 г (1,2 моль) и повышают температуру до 220°С при вакууме 600 мбар. По ходу реакции периодически отбирают пробы на определение гидроксильного числа. Синтез продолжают вести до уменьшения значения гидроксильного числа в пределах 66-88 мг/гКОН. Затем реакционную смесь фильтруют.

Примеры 2. Повторяют пример 1, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 3. Повторяют пример 1, применяют каталитическую смесь в количестве 8,92 г (4 мас. % от сорбита).

Пример 4. Повторяют пример 3, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 5. Повторяют пример 1, добавляют катализатор в количестве 4,46 г (2 мас. % от сорбита; смесь фосфористой кислоты и гидроксида натрия в молярном соотношении кислота : основание 1,2:1).

Пример 6. Повторяют пример 5, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 7. Повторяют пример 5, применяют катализатор в количестве 8,92 г (4 мас. % от сорбита).

Пример 8. Повторяют пример 7, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 9. Повторяют пример 1, добавляют катализатор 4,46 г (2 мас. % от сорбита; смесь лимонной кислоты и гидроксида натрия в молярном соотношении кислота: основание 0,8:1)

Пример 10. Повторяют пример 9, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 11. Повторяют пример 9, применяют катализатор в количестве 8,92 г (4 мас. % от сорбита).

Пример 12. Повторяют пример 11, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 13. Повторяют пример 9, добавляют катализатор в количестве 4,46 г (2 мас. % от сорбита; смесь лимонной кислоты и гидроксида натрия в молярном соотношении кислота: основание 1,2:1).

Пример 14. Повторяют пример 13, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 15. Повторяют пример 13, добавляют катализатор в количестве 8,92 г (4 мас. % от сорбита).

Пример 16. Повторяют пример 15, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 17. Повторяют пример 9, добавляют катализатор в количестве 4,46 г (2 мас. % от сорбита; смесь лимонной кислоты и гидроксида натрия в молярном соотношении кислота: основание 1:2).

Пример 18. Повторяют пример 17, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 19. Повторяют пример 17, применяют катализатор в количестве 8,92 г (4 мас. % от сорбита).

Пример 20. Повторяют пример 19, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 21. Повторяют пример 1, добавляют катализатор 4,46 г (2 мас. % от сорбита; смесь аскорбиновой кислоты и гидроксида натрия в молярном соотношении кислота: основание 0,8:1)

Пример 22. Повторяют пример 21, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 23. Повторяют пример 21, применяют катализатор в количестве 8,92 г (4 мас. % от сорбита).

Пример 24. Повторяют пример 23, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 25. Повторяют пример 21, добавляют катализатор в количестве 4,46 г (2 мас. % от сорбита; смесь аскорбиновой кислоты и гидроксида натрия и в молярном соотношении кислота: основание 1,2:1).

Пример 26. Повторяют пример 25, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 27. Повторяют пример 25, применяют катализатор в количестве 8,92 г (4 мас. % от сорбита).

Пример 28. Повторяют пример 27, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 29. Повторяют пример 21, добавляют катализатор в количестве 4,46 г (2 мас. % от сорбита; смесь аскорбиновой кислоты и гидроксида натрия в молярном соотношение кислота: основание 1:2).

Пример 30. Повторяют пример 29, используют гидрированное пальмовое масло вместо подсолнечного масла.

Пример 31. Повторяют пример 29, добавляют катализатор в количестве 8,92 г (4 мас. % от сорбита).

Пример 32. Повторяют пример 31, используют гидрированное пальмовое масло вместо подсолнечного масла.

Для определения результата испытаний: цвет измерен с помощью колориметра Гарднера; результаты выражены в единицах Гарднера (GU);

гидроксильное число измерено по методу ASTM Е326-85; результаты выражены в мг (КОН эквивалента) ⋅ г (пробы)-1;

число омыления - измерено по методу CAPAR4/1; результаты выражены в мг (КОН эквивалента) г (пробы)-1.

Как видно из таблицы по показателям качества (гидроксильное число, число омыления и цветность), полученные эфиры не уступают прототипу.

1. Способ получения сложных эфиров сорбитана и жирных кислот с цветностью по шкале Гарднера не выше 5,5, предусматривающий взаимодействие растительных масел непосредственно с сорбитом в присутствии каталитической системы, состоящей из оксикислоты и гидроксида натрия при их молярном соотношении 0,8:1,2-1:2 и при концентрации каталитической системы 2-4 мас. % в расчете на сорбит.

2. Способ по п. 1, отличающийся тем, что в качестве жирных кислот используют жирные кислоты гидрированного пальмового или подсолнечного масла.

3. Способ по п. 1, отличающийся тем, что в качестве оксикислот каталитической системы применяют фосфористую, или лимонную, или аскорбиновую кислоты.



 

Похожие патенты:

Изобретение относится к новым производным фенилглицина формулы I, а также к их гидратам или сольватам и/или физиологически приемлемым солям, и/или физиологически приемлемым сложным эфирам, обладающим действием ингибитора амидолитической активности комплекса фактора VIIa/тканевый фактор, которые могут найти применение для терапевтического и/или профилактического лечения заболеваний, таких как тромбоз.

Изобретение относится к новым ароматическим дикетопроизводным и их фармацевтически приемлемым солям, сложным эфирам, простым эфирам, а также к стереоизомерным и таутомерным формам и их смесям в любом соотношении, которые являются ингибиторами глюкозо-6-фосфаттранслоказы; к соединению формулы I где R4, R5, R6 и R 7 независимо представляют собой Н, ОН, Х-алкил, где Х представляет собой О; K представляет собой группу формулы II или III, которые представлены ниже: L представляет собой группу формулы IV, которая представлена ниже: или К и L вместе с соответствующими атомами углерода, к которым присоединены, образуют группу формулы VI, которая представлена ниже: где R1 и R3 независимо представляют собой Н, алкил; R2 представляет собой Н, алкил; Х 1, Х2, Х3, Х4, Х5 , Х6 и Х7 независимо представляют собой О, NH и кольцо “cyclus” вместе с атомами углерода, обозначенными буквами “с” и “d”, представляет собой антрахинон, гидрохинон или фенил, необязательно замещенные одной или несколькими гидрокси, алкокси или алкильными группами.

Изобретение относится к новому терапевтическому лекарству для лечения диабета и включает соединение формулы I: R1-С(O)-C(R2')(R2)-Х-С(O)-R3, где Х представляет группу формулы -С(R4)(R5)-, -N(R6)-, -О-; где R4 - атом водорода, С1-С5алкил, карбокси, фенил, C2-C5ацил, C2-C5алкоксикарбонил, R5 - атом водорода, C1-C5алкил; R6 - водород; R1 - фенил, необязательно замещен C1-C5алкилом, гидрокси, гидроксиалкилом, C2-C6алкенилом, ацилом, карбокси, тиенилом, C3-C7циклоалкилом; бифенил, необязательно замещенный C1-C5алкилом или гидрокси; нафтил; терфенил; C3-C7циклоалкил, необязательно замещенный C1-C5алкилом или фенилом; необязательно замещенный C1-C5алкил; пиридил; бензотиенил; адамантил; инданил; флуоренил или группа ; R2 - водород, C1-C5алкил, необязательно замещенный карбокси; R2' - водород; R3 - C1-C5алкил, необязательно замещенный фенилом или C1-C4алкокси; C1-C4алкокси; гидрокси; фенил; C3-C7циклоалкил, необязательно замещенный C1-C5алкилом; R2 и R7, взятые вместе, образуют группу -(CH2)2-; R2 и R5, взятые вместе, образуют простую связь или -СН2-, - (СН2)3-, -(СН2)4-; R2, R2', R4 и R5, взятые вместе, образуют =CН-СН=СН-СН=; R2' и R3, взятые вместе, образуют -CH(R8)-О, -CH(R8)-CH(R9)-, -CH(R8)NH; R8 и R9 - водород, и его фармацевтически приемлемые соли.

Изобретение относится к новым средствам защиты растений. .

Изобретение относится к усовершенствованному способу выделения или очистки правастатина или его фармакологически приемлемой соли от примесей аналогов правастатина, который включает проведение экстракции правастатина или его фармакологически приемлемой соли, содержащих примеси аналогов правастатина, органическим растворителем формулы СН3СО2R (где R представляет собой алкил, содержащий три или четыре атома углерода); к усовершенствованному способу выделения или очистки правастатина или его фармакологически приемлемой соли, который включает разложение примесей с использованием неорганической кислоты или который включает удаление соединения формулы (I) с использованием неорганического основания.

Изобретение относится к усовершенствованному способу получения сложных эфиров карбоновых кислот общей формулы (I) этерификацией соответствующих кислот или ангидридов спиртами при мольном соотношении кислота:спирт=1: 0,35-2,2 в присутствии углеводородов в качестве растворителя и ароматической сульфокислоты или кислого сульфата в качестве катализатора при температуре кипения реакционной смеси с отгонкой образующейся воды, последующей промывкой реакционной смеси и нейтрализацией ее щелочным раствором, взятым с 5-20 мас.

Изобретение относится к способу получения сложных эфиров жирных кислот и сорбитана и/или их алкоксилированных производных путем взаимодействия жирной кислоты непосредственно с сорбитом в присутствии каталитической системы.

Изобретение относится к эфирам, в частности к получению эфиров алифатических карбоновых кислот с 5-16-г атомами углерода и многоатомных спиртов.. .

Описана косметическая композиция в виде эмульсии Пикеринга типа «масло в воде» для кожи или волос, содержащая микрогелевый эмульгатор типа «ядро-оболочка», ингредиенты масляной фазы и ингредиенты водной фазы, где микрогелевый эмульгатор типа «ядро-оболочка» состоит из сополимера, типично полученного путем полимеризации макромономеров полиэтиленоксида следующей формулы (1), гидрофобных мономеров следующей формулы (2) и сшивающих мономеров следующей формулы (3) в следующих условиях (А) и (В): А) молярное соотношение исходного молярного количества указанного полиэтиленоксида к исходному молярному количеству гидрофобных мономеров составляет 1:10-1:250, (В) исходное количество указанных сшивающих мономеров составляет 0,1-1,5 мас.% относительно исходного количества указанных гидрофобных мономеров; где R1 означает алкил, имеющий 1-3 атомов углерода, и n является целым числом от 8 до 200, X означает Η или СН3; где R2 означает алкил, имеющий 1-3 атомов углерода, и R3 означает алкил, имеющий 1-12 атомов углерода; где R4 и R5 каждый независимо означает алкил, имеющий 1-3 атомов углерода, и m является числом от 0 до 2, где количество микрогелевого эмульгатора типа «ядро-оболочка» составляет 0,01-10 мас.% относительно общего количества композиции в виде эмульсии Пикеринга.
Наверх