Неорганическая химия (C01)
C01 Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B35; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P3; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)(20787) 
Настоящее изобретение относится к совместному получению обогащенного водородом сжатого природного газа (H-CNG) и, в частности, к способам и устройствам для совместного получения H-CNG и углеродных нанотрубок (УНТ).

Изобретение относится к системам и способам получения карбамата аммония и, точнее, относится к системам и способам получения водных растворов карбамата аммония. Предложен способ получения раствора карбамата аммония, способ включает: предоставление реактора, содержащего раствор аммиака; подачу диоксида углерода в раствор аммиака с образованием смеси; объединение раствора гидроксида натрия и смеси с образованием карбамата аммония.
Изобретение относится к синтезу коллоидных растворов. Раскрыт способ получения стабильного раствора коллоидного серебра путем приготовления реакционной смеси, содержащей нитрат серебра, высокомолекулярный стабилизатор, глюкозу, щелочной реагент, и последующего нагревания в течение заданного времени, при этом в качестве высокомолекулярного стабилизатора используют нитрованные гуминовые кислоты концентрацией 8,3 мг/мл, расход которых составляет 0,1-0,3 мл, расход глюкозы концентрацией 6,2 мг/мл для приготовления реакционной смеси составляет 1-1,5 мл, в качестве щелочного реагента используют раствор этилендиамина концентрацией 9,7 мг/мл, расход которого составляет 1-2 мл, для нитрата серебра используется раствор из расчета концентрации серебра 10,8 мг/мл, расход которого 0,2-0,3 мл, а нагревание проводят в СВЧ печи в течение 20-90 с.

Изобретение может быть использовано для обеспечения водородным топливом и перекисью водорода энергетических установок с тепловыми двигателями или с электрохимическими генераторами на топливных элементах, для получения водорода для технологического использования.

Изобретение относится к области неорганической химии и может быть использовано при изготовлении керамики, огнеупоров, электрохимических сенсоров, топливных элементов и псевдоконденсаторов. В качестве соединений цирконила и празеодима используют их нитраты, взятые в эквимолярном соотношении на соответствующие оксиды.

Изобретение относится к цветной металлургии, в частности к извлечению ионов лития из литийсодержащего соляного раствора. Включает контактирование литийсодержащего рассола с литий-ионными ситами, которые содержат оксид титана или ниобия, в первом реакторе при перемешивании для образования ионов лития с литий-ионными ситами.

Изобретение относится к способу получения композита Mn3O4/C. Способ включает обработку в сольвотермальных условиях реакционной смеси, содержащей водный раствор перманганата калия KMnO4 и углеродсодержащего реагента.

Изобретение относится к производству тонкопленочных покрытий, которые являются перспективным материалом для электрохимических накопителей энергии, таких как литий-ионные аккумуляторы, суперконденсаторы.
Группа изобретений относится к способу приготовления цеолитсодержащего катализатора олигомеризации. Предложены способ приготовления цеолитсодержащего катализатора олигомеризации, включающий дезактивацию внешней поверхности кристаллического цеолита типа ZSM-5 с мольным отношением Si/Al, равным 80-1070, путём его обработки кремнийорганическим соединением на стадии формовки катализатора с последующим кальцинированием, цеолитсодержащий катализатор олигомеризации, полученный описанным способом, а также его применение для олигомеризации бутан-бутиленовой, пропан-пропиленовой или пентан-амиленовой фракций.

Настоящее изобретение относится к химической промышленности, в том числе, газохимии и нефтехимии, а именно к способу получения метанола и к установке для его осуществления. Предлагаемый способ включает следующие стадии: предварительную подготовку исходного углеводородного газа, конверсию подготовленного углеводородного газа водяным паром в синтез-газ; каталитическое превращение конвертированного синтез-газа в метанол.

Изобретение может быть использовано в электронике и оптике. Устройство для нанесения алмазных покрытий содержит вакуумную камеру, в которой расположены разрядная камера 14 и камера осаждения 5, сообщающиеся между собой через коническое сопло 4, вершина которого направлена в разрядную камеру 14, отделённую герметичной диэлектрической вставкой 10 из кварца от атмосферной части, в которой расположен источник СВЧ-излучения - магнетрон.

Изобретение относится к технологии получения монокристалла диоксида титана ТiO2, который представляет собой широкозонный полупроводник для применения в коррозионно-стойких покрытиях, пигментах, газовых датчиках, медицинских имплантатах, оптических активных покрытиях, фотокатализе, солнечной энергетике.
Изобретение относится к гидрометаллургии благородных металлов, в частности к аффинажному производству металлов платиновой группы (МПГ) и может быть использовано для удаления примесей металлов платиновой группы из раствора родия.
Изобретение относится к получению изотопно обогащенного тетрахлорида германия GeCl4. Предложен способ получения изотопно обогащенного тетрахлорида германия из неорганических соединений, отличающийся тем, что в качестве неорганических соединений используют изотопно обогащенный тетрафторид германия (70GeF4, 72GeF4, 73GeF4, 74GeF4, 76GeF4) и хлорид алюминия (III), взаимодействие которых проводят при температуре 150-400°С в закрытом реакторе при 2-10-кратном избытке хлорида алюминия (III) относительно стехиометрического соотношения и продолжительности контакта реагентов 2-20 ч.
Изобретение относится к технологии получения хлоридов калия и натрия из калий-натрийсодержащего сырья и может быть использовано на сильвинитовых обогатительных фабриках при производстве хлористого калия галургическим методом.

Изобретение относится к химической промышленности и может быть использовано при получении пищевой поваренной соли, искусственного сильвинита и сырья для производства металлического магния. Сначала проводят подземное растворение карналлитовой либо смешанной калийно-магниевой руды горячим раствором с массовой долей хлорида магния, не превышающей 25 %.

Настоящее изобретение относится к молекулярному ситу NaY с обогащенной алюминием поверхностью, способу его получения, способу получения модифицированного молекулярного сита типа Y и к модифицированному молекулярному ситу типа Y.

Изобретение относится к медицине, фармацевтике и биотехнологии и может быть использовано для детоксикации организма, доставки лекарственных субстанций. Для этого применяют нанокомпозитные титаны в качестве носителя лекарственного средства и/или в качестве сорбента для экстракорпоральной сорбции биологических жидкостей организма, где в качестве титаната используют синтезированные минералы: иванюкит (Na2Ti4(SiO4)3O2(OH)2⋅6H2O) и/или LHT-9 (kN2H4⋅mAl-2O⋅(Ti1-qMq)(O2-wOHxFy)2-z⋅nH2O, где k, m, q, w, х, у и z - коэффициенты от 0,01 до 0,5; n - целое число, 0≤n≤5; А - по крайней мере один катион из группы, состоящей из Na, K, Mg, Са; М - Al или Fe).
Группа изобретений может быть использована в химической промышленности. Способ получения экстракционной фосфорной кислоты (ЭФК) включает сернофосфорнокислотное разложение фосфатного сырья с образованием экстракционной пульпы, разделение пульпы на фосфорную кислоту и осадок фосфополугидрата сульфата кальция путем фильтрации, промывку осадка фосфополугидрата сульфата кальция водой и возвращение полученного после промывки оборотного раствора фосфорной кислоты в процесс.

Изобретение относится к области порошковой металлургии, в частности к получению ванадий-алюминиевого карбида V2AlC, относящегося к материалам семейства МАХ фаз, которые используются в химической и металлургической промышленности для изготовления деталей, работающих при высокой температуре в окислительных средах и как прекурсоры для получения электродных материалов литий-ионных и натрий-ионных батарей.

Изобретение относится к неорганической химии. Устройство для получения порошка карбида кремния содержит открытый сверху прямоугольный корпус, на дне которого размещена горизонтальная плита, на которой закреплена диэлектрическая прокладка, на которой в цилиндрическом держателе размещен графитовый цилиндрический катод в виде вертикально расположенного стакана.

Изобретение относится к получению порошка карбида кремния, используемого в качестве источника при выращивании монокристаллов карбида кремния. Для получения порошка карбида кремния смешивают диоксид кремния и углерод, полученную смесь размещают в вакуумной печи, заполняют печь инертным газом и подвергают смесь термообработке в атмосфере инертного газа с последующим отжигом избыточного углерода на воздухе.

Изобретение относится к конструкции ячейки высокого давления для синтеза поликристаллических алмазных резцов с составным нагревательным элементом и может использоваться для изготовления буровых долот. Ячейка высокого давления для синтеза алмазных поликристаллических резцов включает куб, металлический токоввод с пирофиллитовой вставкой, металлический диск, внешнюю теплоизоляционную трубку, нагревательный элемент, солевую трубку, разделительные диски, сборные чаши с алмазным порошком на подложке.

Изобретение относится к химической промышленности, а именно к способам получения двойного фосфата NaYP2O7. Технический результат достигают за счет использования в способе в качестве прекурсоров олеата иттрия, олеата натрия, трибутилфосфата с мольным соотношением Na:Y:Р=1-1,2:1:2,1-2,3, которые растворяют в спиртовом растворе канифоли, удаляют спирт и подвергают термической обработке при 400-600°С.
Изобретение относится к получению висмутсодержащих соединений, используемых в медицине. Получение раствора висмут-калий-аммоний цитрата осуществляют добавлением к воде, содержащей лимонную кислоту, 45%-ного водного раствора гидроксида калия при мольном соотношении лимонной кислоты к гидроксиду калия, равном 3.

Изобретение относится к области получения эластомерных материалов (резин) на основе фторорганических каучуков. Предложен способ получения эластомерных материалов на основе фторорганических каучуков, в котором их перед вулканизацией помещают в среду диоксида углерода, находящегося в сверхкритическом состоянии при температуре не менее 40°С и давлении не менее 10 МПа, после чего проводят вулканизацию резиновых смесей по рекомендованному для них режиму.

Изобретение относится к области магноники и СВЧ-техники, в частности, к созданию тонких монокристаллических магнитных пленок железо-иттриевого граната (ЖИГ) на подложке из немагнитного граната с наследованием пленкой кристаллической ориентации и структуры подложки с нулевым рассогласованием параметров кристаллической решетки пленки и подложки.

Изобретение относится к металлургии цветных металлов и может быть использовано для сушки, дегидратации и прокалки порошкообразных материалов, преимущественно для термообработки гидроксида алюминия при производстве глинозема различных марок.
Изобретение относится к металлургии, в частности к извлечению фтора из лежалого шлама алюминиевого производства, и может быть использовано на предприятиях, производящих первичный алюминий. Лежалый шлам обрабатывают раствором каустической соды при температуре 60-80°С 2,0-2,4 %-ным раствором каустической соды при постоянном перемешивании в течение 90-120 мин под действием ультразвука.

Изобретение относится к области водородной энергетики, конкретно к жидкому органическому носителю водорода (ЖОНВ), состоящему из би- и трициклических нафтеновых углеводородов. Носитель получается в процессе гидрирования масла ПОД, представляющего собой продукты конденсации циклогексанона - дианоны, содержащиеся в отходах производства капролактама.

Изобретение относится к химии и может быть использовано при изготовлении высокопрочной керамики, нагревательных элементов приборов, фотокатализаторов для очистки сточных вод, микроэлементов для электроники, а также в технологии подготовки твёрдых радиоактивных отходов к консервации и длительному хранению.

Способ производства водорода может быть использован в нефтеперерабатывающей, нефтегазохимических отраслях промышленности для крупнотоннажного производства водорода. Способ производства водорода включает повышение давления исходного сырья в виде природного газа с использованием компрессорного оборудования, и/или сжиженных углеводородных газов (СУГ), и/или легкого бензина, и/или углеводородных смесей с использованием насосного оборудования.

Изобретение относится к области очистки промывных сточных вод гальванических цехов от тяжелых металлов, к которым относится хром. Способ очистки промывных сточных вод от шестивалентного хрома включает добавление в сточную воду адсорбента, интенсивное перемешивание с водой в реакторе с мешалкой в течение 25 минут, последующее отстаивание и разделение твердой и жидкой фаз.

Изобретение относится к способу получения пористого углеродного материала и к созданию пористых углеродных материалов, которые могут использоваться как катализаторы или носители катализаторов. Способ получения пористого углеродного материала включает приготовление фотополимеризуемой композиции, состоящей из двух мономеров 2-феноксиэтилакрилата и триметилолпропантриакрилата, взятых в соотношении 1:1, фотоинициаторов и наполнителя, в качестве которого используют металлоорганический координационный полимер ZIF-8 или металлоорганические координационные полимеры Ni-BTC и ZIF-8; последующую 3D печать, в ходе которой одновременно происходят полимеризация указанной фотополимеризуемой композиции с образованием металлосодержащего полимерного композита и формование из него объекта заданной формы; и термическую обработку формованного полимерного композита в восстановительной среде при температуре 900-1000°С.

Группа изобретений относится к способу улавливания, секвестрации и утилизации диоксида углерода (CCSU) и к реакторной установке, подходящей для реализации способа. Совмещенный способ улавливания, секвестрации и утилизации диоксида углерода содержит этапы, на которых получают водную суспензию, содержащую водный раствор и твердые частицы, содержащие активированный минерал силиката магния.

Изобретение относится к химической технологии получения реактивного альфа-оксида алюминия (α-Al2O3), который используют как высокодисперсный компонент при производстве биосовместимой, конструкционной и технической корундовой керамики, как компонент матричных систем в технологии низкоцементных огнеупорных литьевых масс, а также в качестве катализатора, адсорбента, абразивного материала.

Изобретение относится к химической, космической, военной и медицинской отраслям промышленности и может быть использовано при изготовлении электродов литий-ионных аккумуляторов, электропроводящих и антикоррозионных (нано)покрытий, устройств для хранения данных, гибких преобразователей энергии, суперконденсаторов, транзисторов, (фото)катализаторов, солнечных элементов, сенсорных материалов, топливных элементов и электрохромных устройств, а также материалов медико-биологического назначения.

Изобретение относится к технологии получения графеновых материалов, в частности к способам восстановления оксида графена до графена посредством обработки в среде галогенов. Предложен способ восстановления оксида графена до графена посредством обработки в среде галогенов, включающий стадии получения суспензии оксида графена в растворе йода, формирования пленки восстановленного оксида графена высушиванием суспензии, отличающийся тем, что для приготовления суспензии используют раствор йода в изопропаноле, при этом концентрация йода в изопропаноле составляет от 1 до 10 % масс., и 1%-ную водную суспензию оксида графена, при этом высушивание суспензии на основе оксида графена с йодом заключается в выгрузке суспензии в пластиковые контейнеры и их помещении в вытяжной шкаф на 4 суток при нормальных условиях.

Изобретение относится к получению композита монооксид марганца/углерод MnO/C, который может быть использован в качестве эффективного анодного материала литий-ионных источников тока, катодного материала цинк-ионных источников тока.

Изобретение относится к области химической технологии, а именно к получению ультрадисперсного активированного альфа-оксида алюминия. Способ включает сухой помол кальцинированного глинозема в шаровой мельнице.

Изобретение относится к устройствам для очистки газов от сероводорода с получением серы. Установка получения серы прямым окислением кислого газа включает охлаждаемый каталитический реактор 1 с катализатором окисления сероводорода, сероуловитель в виде двухсекционного скруббера 2, смеситель 3, сепаратор 4, насосы 5 и 6, холодильник 7, блок утилизации отходящих газов 8.
Изобретение относится к химии полиэдрических боргидридных соединений и мочевины, а именно к гидратам додекагидро-клозо-додекаборатов комплексных катионов меди и цинка с мочевиной состава [Cu(Ur)4]B12H12⋅2H2O и [Zn(Ur)6]B12H12⋅2H2O.

Изобретение относится к терморегулирующему покрытию для радиационной поверхности космического объекта и к способу формирования этого покрытия. Способ заключается в том, что предварительно на радиационную поверхность наносят последовательно слой грунтовки ВЛ-02, слой эмали АК-512 белая с вязкостью в состоянии поставки по ВЗ-4 от 60 до 85 с и массовой долей нелетучих веществ от 54 до 58% толщиной от 80 до 100 мкм и создают на ее поверхности сплошную сетку рисок глубиной от 15 до 45 мкм.

Изобретение относится к области пиролитического разложения углеводородов. Предложен способ получения водорода и пироуглерода из углеводородов, в котором углеводороды превращаются в водород и углерод в реакторе при температурах, составляющих от 1000°C до 1800°C, причем указанный реактор содержит два электрода, размещенные на расстоянии друг от друга в направлении движения потока углеводородов, отличающийся тем, что на участке реактора между указанными электродами по всему поперечному сечению реактора вводят инертный газовый компонент, при этом реактор на указанном участке между электродами содержит углеродные частицы.

Изобретение относится к защитным покрытиям для медицинских имплантатов из никелида титана и может применяться для сокращения сроков приживаемости имплантатов. Способ получения биосовместимого покрытия на изделиях из монолитного никелида титана включает последовательное нанесение трех чередующихся слоев титан-никель-титан в атмосфере, содержащей аргон, и нагрев изделий до температуры, достаточной для самопроизвольного начала реакции самораспространяющегося высокотемпературного синтеза, с последующим охлаждением в тех же условиях в течение 60 мин до комнатной температуры, при этом толщину указанных слоев выбирают равной 40±5 нм, причем нагрев изделий проводят до температуры 1000±10°С в течение 60±5 с в газовой среде, состоящей из 80% N и 20% Ar.

Изобретение относится к технологии синтеза анизотропных (с осью легкого намагничивания, направленной перпендикулярно плоскости пленки) пленок BaFe12O19 методами осаждения из газовой фазы. Такой материал может быть использован при разработке планарных невзаимных СВЧ-устройств с эффектом самосмещения, в устройствах спинтроники в качестве магнитного диэлектрика.

Изобретение относится к способу получения углеродматричного наноструктурированного композита, в котором в качестве углеродной матрицы используют многостенные углеродные нанотрубки с удельной поверхностью 200 м2/г, внешним диаметром трубок 15-20 нм и внутренним диаметром каналов 3-6 нм.

Группа изобретений может быть использована в химической промышленности. Способ получения углеродного наноматериала и водорода включает разложение углеводородов в присутствии катализаторов, содержащих переходные металлы подгруппы железа, при температуре 550-800°С путем контакта исходного углеводородного газа с движущимся в горизонтальном направлении виброожиженным слоем катализатора при непрерывной противоточной подаче катализатора и исходного углеводородного газа и непрерывном отводе образующихся газообразных и твердых продуктов реакции.

Изобретение относится к способу графитизации из жидкого углеводорода. Способ заключается в размещении в жидком углеводороде деталей из графита, в подключении к плюсу токопровода сварочного приспособления одной из деталей в форме стержня, подключение к минусу сварочного приспособления другой детали, в нагревании при атмосферном давлении деталей при высокой температуре, в образовании электрической дуги между деталями, в испарении жидкого углеводорода с образованием углерода на поверхности деталей.

Изобретение может быть использовано в химической промышленности. Для получения бромида натрия газообразный хлор и бромсодержащий рассол смешивают в статическом смесителе с образованием окисляющей жидкости.